- Home
- Nicholas Wade
Before the Dawn: Recovering the Lost History of Our Ancestors
Before the Dawn: Recovering the Lost History of Our Ancestors Read online
Table of Contents
Title Page
Copyright Page
Chapter 1 - GENETICS & GENESIS
Chapter 2 - METAMORPHOSIS
Chapter 3 - FIRST WORDS
Chapter 4 - EDEN
Chapter 5 - EXODUS
Chapter 6 - STASIS
Chapter 7 - SETTLEMENT
Chapter 8 - SOCIALITY
Chapter 9 - RACE
Chapter 10 - LANGUAGE
Chapter 11 - HISTORY
Chapter 12 - EVOLUTION
NOTES
Acknowledgements
CREDITS
INDEX
ABOUT THE AUTHOR
THE PENGUIN PRESS
Published by the Penguin Group
Penguin Group (USA) Inc., 375 Hudson Street, New York, New York 10014, U.S.A. Penguin Group
(Canada), 90 Eglinton Avenue East, Suite 700, Toronto, Ontario, Canada M4P 2Y3 (a division of Pearson
Penguin Canada Inc.) Penguin Books Ltd, 80 Strand, London WC2R 0RL, England Penguin Ireland,
25 St. Stephen’s Green, Dublin 2, Ireland (a division of Penguin Books Ltd) Penguin Books Australia Ltd,
250 Camberwell Road, Camberwell, Victoria 3124, Australia (a division of Pearson Australia Group Pty
Ltd) Penguin Books India Pvt Ltd, 11 Community Centre, Panchsheel Park, New Delhi—110 017,
India Penguin Group (NZ), Cnr Airborne and Rosedale Roads, Albany, Auckland 1310, New Zealand
(a division of Pearson New Zealand Ltd) • Penguin Books (South Africa) (Pty) Ltd, 24 Sturdee Avenue,
Rosebank, Johannesburg 2196, South Africa
Penguin Books Ltd, Registered Offices:
80 Strand, London WC2R 0RL, England
First published in 2006 by The Penguin Press,
a member of Penguin Group (USA) Inc.
Copyright © Nicholas Wade, 2006
All rights reserved
Illustration credits appear on pages 299-300.
LIBRARY OF CONGRESS CATALOGING -IN-PUBLICATION DATA
eISBN : 978-1-429-52112-3
1. Human evolution. 2. Social evolution. I. Title.
GN281.W33 2006
599.93’8—dc22 2005055293
Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), without the prior written permission of both the copyright owner and the above publisher of this book.
The scanning, uploading, and distribution of this book via the Internet or via any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage piracy of copyrightable materials. Your support of the author’s rights is appreciated.
http://us.penguingroup.com
1
GENETICS & GENESIS
It has often and confidently been asserted, that man’s origin can never be known: but ignorance more frequently begets confidence than does knowledge: it is those who know little, and not those who know much, who so positively assert that this or that problem will never be solved by science.
CHARLES DARWIN, THE DESCENT OF MAN
TRAVEL BACK INTO THE HUMAN PAST, and the historical evidence is plentiful enough for the first couple of hundred years, then rapidly diminishes. At the 5,000-year mark written records disappear altogether, yielding to the wordless witness of archaeological sites. Going farther back, even these become increasingly rare over the next 10,000 years, fading almost to nothing by 15,000 years ago, the date of the first human settlements. Before that time, people lived a nomadic existence based on hunting and gathering. They built nothing and left behind almost nothing of permanence, save a few stone tools and the remarkable painted caves of Europe.
Travel on back for another 35,000 years and you will have reached the 50,000-year mark, the time when the ancestral human population was still confined to its homeland somewhere in northeast Africa but had begun to show the first signs of modern behavior. If this is the point at which the modern human story begins, then written records exist for just the last 10% of it; 90% of human history seems irretrievably lost.
Keep traveling back in time to the earliest starting point in the human narrative, the period 5 million years ago when the ape-like creatures at the head of the human line of descent split from those at the head of the chimpanzee line of descent. The only physical evidence from throughout this period, which saw the evolution from ape to human form, is a handful of battered skulls and a few stone tools.
No deep understanding, it might seem, could ever be gained of these two vanished periods, the 5 million years of human evolution and the 45,000 years of prehistory. But in the past few years an extraordinary new archive has become available to those who study human evolution, human nature and history. It is the record encoded in the DNA of the human genome and in the versions of it carried by the world’s population. Geneticists have long contributed to the study of the human past but are doing so with particular success since the full sequence of DNA units in the genome was determined in 2003.
Why should the human genome, specifically shaped for survival in the present, have so much to say about the past? As the repository of hereditary information that is in constant flux, the genome is like a document under ceaseless revision. Its mechanism of change is such that it retains evidence about its previous drafts and these, though not easy to interpret, provide a record that stretches deep into the past. The genome can therefore be interrogated at many different time levels. It can supply answers that reach back more than 50,000 years to the genetic Adam, a man whose Y chromosome is carried by all men now alive. Or it can be queried about the events of a mere couple of centuries ago, such as whether Thomas Jefferson, the third president of the United States, had a secret family with his slave mistress Sally Hemings.
From Adam to Jefferson, the genome is helping researchers create a new and far more detailed picture of human evolution, human nature and history. From the great darkness, a surprisingly full narrative is emerging. This new narrative of the human past rests on a solid foundation laid by paleoanthropologists, archaeologists, anthropologists and many other specialists. It can be called new in the sense that genetic information now contributes to each of these traditional disciplines and is beginning to draw them together.
This book describes those aspects of human evolution, nature and prehistory that have been illumined by genetic discoveries of the last few years. Readers who do not follow these fields closely may be surprised at the richness of the information in the new narrative. There exists no video of how apes slowly morphed into people, but a sequence of the salient events can for the most part be reconstructed. There is no map that records the dispersal of the new humans from their ancestral homeland, but researchers can now follow the path they took out of Africa and their migrations through the world outside. It’s even possible to reconstruct some of the social institutions that emerged as people made the transition from a nomadic way of life, based on hunting and gathering, to today’s complex societies.
Information from the genome has helped tell paleoanthropologists when humans lost their body hair and when they gained the power of speech. It has clarified for archaeologists their long quandary as to whether Neanderthals and modern humans peacefully interbred with each other or fought until the Neanderthals’ extinction. It has furnished anthropology with information about human adaptation to cultural practices like cattle-herd
ing and cannibalism. The cascade of DNA data is even benefiting historical linguistics, though indirectly, as biologists apply the tree-building methods developed for gene genealogies to reconstructing the evolution of language.
On the critical question of the ancestral human population of 50,000 years ago, the last group from which everyone alive today is descended, the techniques of paleoanthropology and archaeology are powerless to say anything about a people that has vanished without trace. But geneticists, by rummaging around in the genome’s rich attic, can fill in all kinds of unexpected detail. They can estimate how large the ancestral population was. They can say where in Africa it probably lived. They can put a date, though a rough one, on when language emerged. They can even infer, in one instance, what the first language sounded like.
The First Tailored Clothes
Few findings better illustrate geneticists’ ability to cast light into surprising corners of the human past than a recent estimate of the date that people first sewed their own clothes. Early humans may have used loose animal skins for millions of years, worn perhaps like a cape against the cold, but fabricated garments were a more recent invention. Archaeologists have never been able to determine when clothes were first worn because both the materials and the bone needles used to sew them are highly perishable.
In the fall of 1999, Mark Stoneking’s son came home from school in Leipzig, Germany, with a note warning that a classmate had a case of head lice. Stoneking, an American researcher at the Max Planck Institute for Evolutionary Anthropology, read it as carefully as would any anxious parent. But as a geneticist long interested in human origins, his attention was drawn to a reassurance in the school note that lice cannot survive longer than 24 hours away from the warmth of the human body. “I thought if that was true, then lice must have been spread around the world by human migrations,” he says. Stoneking figured that if he could prove this were so, he would have discovered an independent confirmation of the migration pattern implied by human DNA. But after a few hours of library research, he realized that the lice might hold in their DNA an even more interesting fact—the date when humans first wore clothing.
The compilers of the book of Genesis were so exercised by the question of human nakedness that they included not just one but two accounts of how people came to seek modesty in clothing. In the first, Adam and Eve sewed themselves aprons of fig leaves after realizing their state of undress. In the second, the Creator himself tailored the errant pair coats of skins before expelling them into the world beyond Eden.1 Neither account gives due weight to the other interested party in the story of human clothing, the louse. Once, after all, in the days when human forebears were fully covered with hair just like any other ape or monkey, the louse must have ranged freely from head to toe.
When humans lost their body hair, the louse’s domain shrank, confining it to the lonely island of hair that tufts absurdly from the human head. But it patiently bided its time and many millennia later, when people started to wear clothes, the head louse seized the chance to regain its lost territory by evolving a new variety, the body louse, that could live in clothing. The head and body louse closely resemble each other except the body louse is larger and has claws specialized for grasping material, not shafts of hair. Stoneking realized that he could date the invention of clothing if he could only figure out from variations in lice DNA the time at which the body louse began to evolve from the head louse.
He collected head and body lice from the citizens of 12 countries around the world, from Ethiopia to Ecuador to New Guinea. He analyzed all the variations in a small segment of each head and body louse’s genetic material and arranged each population’s lice in a family tree. Knowing the rate at which variations accumulate on DNA over the centuries, he could then calculate the dates of the various forks or branch points in the tree.
The branch point at which the body louse first evolved from the head louse turned out to be around 72,000 years ago, give or take several thousand years either way.2 Assuming the body louse evolved almost immediately after its new niche was available to it, then people first addressed their nakedness only in the most recent stage of their evolutionary history. It was about this time, or a few thousand years later, that people perfected language and broke out of Africa to colonize the rest of the world. It seems they had decided to get dressed for the occasion.
From Adam to Jefferson
Genetics, with its fresh new insights into the human past, ranges across many other academic territories. At least seven traditional disciplines bear on the human past. Paleoanthropologists, the students of fossil human remains, have reconstructed the major steps by which the human lineage branched off from apes 5 million years ago and, by 100,000 years ago, had morphed into humans who were anatomically though not behaviorally similar to people of today. Archaeologists have picked up the story from there, establishing the foundation of dates and basic facts on which other specialists seek to reconstruct various aspects of past human behavior. Population geneticists have tracked the migration of human populations around the world. Their early analyses were based on differences in human proteins but the emphasis has now switched to DNA, a more convenient and informative source.
Historical linguists have traced back the family tree of human languages, reconstructing vanished tongues such as proto-Indo-European, the inferred ancestral tongue of many languages spoken in Europe, Iran and India. Primatologists, after many years of patient observation, have gained a deep understanding of how chimpanzee and bonobo societies work. This achievement provides insights into the social organization of the primates from which both chimps and people evolved, since chimps may closely resemble those ancient ancestors. Social anthropologists, through the study of surviving hunter-gatherers and other primitive societies, have laid the basis for reconstructing the evolution of human social structures. Evolutionary psychologists seek to identify the tasks that evolution has designed the mind to perform. In two other fields closely related to evolutionary psychology, those of human behavioral ecology and evolutionary anthropology, researchers explore ways of applying the principles of evolutionary biology to human societies. From these three subjects have emerged many sharp insights into how the search for reproductive advantage shapes people’s choices in marriage, parenting and the allocation of their resources.
Researchers in each of these seven disciplines have helped delineate the distant human past, often by ingenious interpretation of fragmentary evidence. The seven traditional disciplines are increasingly being aided by an eighth, that of evolutionary biology, the body of theory on which evolutionary psychology seeks to draw. Many specialists have assumed that evolutionary change works so slowly that its effect on the recent human past, if any, can safely be ignored. But it was only lack of knowledge that made it seem evolution’s hand had been stayed. As is now evident from analyses of DNA, human genes have continued to evolve until the present day. Like everything else in biology, the human past and present are incomprehensible except in the light of evolution.
The human genome is a new source of data that enriches all the disciplines concerned with the human past. It furnishes two quite different types of information, one to do with genes, the other with genealogies.
New versions of existing genes often arise in the course of evolution, and become more common in a population because they confer some advantage. These new versions carry distinctive properties that allow geneticists to estimate their approximate age. So when a gene is found that concerns some major feature of human evolution, like the FOXP2 gene, which is involved in language, or the melanocortin receptor gene which influences skin color, geneticists can often set dates on the window of time in which the feature evolved.
A second kind of information in the genome allows ancestries to be traced, usually through a special part of the genome like the Y chromosome, which is passed down essentially unchanged from one generation to another. Every few generations a mutation—the random conversion of one DNA unit to another�
�occurs on the Y, with the result that all descendants of the man in whom the mutation occurred will also carry it. All men can be assigned to different lineages, based on the particular pattern of mutations they carry on their Y chromosome. These patterns allow many inferences to be drawn about human migrations because the lineages for the most part are confined to the specific geographical regions where their owners first settled.
The human genome thus records a vast span of the human past and enriches the findings of traditional disciplines. Following are the principal themes, explored in the pages that follow, to which DNA has added new insights:• There is a clear continuity between the ape world of 5 million years ago and the human world that emerged from it. The thread is most visible at the level of DNA: the genomes of humans and chimpanzees are 99% identical. It is evident enough in the physical resemblance between the two species. But perhaps the most interesting level of continuity is between the social institutions of the ape and human worlds.The apes ancestral to both chimpanzees and humans probably lived as small bands of related individuals who defended a home territory, often with lethal attacks against neighbors. They had separate male and female hierarchies and most infants were sired by the society’s dominant male or his allies. The emerging human line was also territorial but in time developed a new social structure based on pair bonding, a stable relationship between a male and one or more females. This critical shift would have given all males a chance of reproduction and hence a stronger interest in the group’s welfare, making human societies larger and more cohesive.